In probability theory, a probability density function ( PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would be equal to that sample. Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0 (since there is an infinite set of possible values to begin with), the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample.
More precisely, the PDF is used to specify the probability of the random variable falling within a particular range of values, as opposed to taking on any one value. This probability is given by the integral of this variable's PDF over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range. The probability density function is nonnegative everywhere, and the area under the entire curve is equal to 1.
The terms probability distribution function and probability function have also sometimes been used to denote the probability density function. However, this use is not standard among probabilists and statisticians. In other sources, "probability distribution function" may be used when the probability distribution is defined as a function over general sets of values or it may refer to the cumulative distribution function, or it may be a probability mass function (PMF) rather than the density. "Density function" itself is also used for the probability mass function, leading to further confusion.[Ord, J.K. (1972) Families of Frequency Distributions, Griffin. (for example, Table 5.1 and Example 5.4)] In general though, the PMF is used in the context of discrete random variables (random variables that take values on a countable set), while the PDF is used in the context of continuous random variables.
Example
Suppose bacteria of a certain species typically live 20 to 30 hours. The probability that a bacterium lives 5 hours is equal to zero. A lot of bacteria live for approximately 5 hours, but there is no chance that any given bacterium dies at exactly 5.00... hours. However, the probability that the bacterium dies between 5 hours and 5.01 hours is quantifiable. Suppose the answer is 0.02 (i.e., 2%). Then, the probability that the bacterium dies between 5 hours and 5.001 hours should be about 0.002, since this time interval is one-tenth as long as the previous. The probability that the bacterium dies between 5 hours and 5.0001 hours should be about 0.0002, and so on.
In this example, the ratio (probability of living during an interval) / (duration of the interval) is approximately constant, and equal to 2 per hour (or 2 hour−1). For example, there is 0.02 probability of dying in the 0.01-hour interval between 5 and 5.01 hours, and (0.02 probability / 0.01 hours) = 2 hour−1. This quantity 2 hour−1 is called the probability density for dying at around 5 hours. Therefore, the probability that the bacterium dies at 5 hours can be written as (2 hour−1) dt. This is the probability that the bacterium dies within an infinitesimal window of time around 5 hours, where dt is the duration of this window. For example, the probability that it lives longer than 5 hours, but shorter than (5 hours + 1 nanosecond), is (2 hour−1)×(1 nanosecond) ≈ (using the unit conversion nanoseconds = 1 hour).
There is a probability density function f with f(5 hours) = 2 hour−1. The integral of f over any window of time (not only infinitesimal windows but also large windows) is the probability that the bacterium dies in that window.
Absolutely continuous univariate distributions
A probability density function is most commonly associated with absolutely continuous univariate distributions. A
random variable has density
, where
is a non-negative Lebesgue-integrable function, if:
Hence, if is the cumulative distribution function of , then:
and (if is continuous at )
Intuitively, one can think of as being the probability of falling within the infinitesimal interval .
Formal definition
(
This definition may be extended to any probability distribution using the measure theory definition of probability.)
A random variable with values in a measurable space (usually with the as measurable subsets) has as probability distribution the pushforward measure X∗ P on : the density of with respect to a reference measure on is the Radon–Nikodym derivative:
That is, f is any measurable function with the property that:
for any measurable set
Discussion
In the continuous univariate case above, the reference measure is the
Lebesgue measure. The probability mass function of a discrete random variable is the density with respect to the
counting measure over the sample space (usually the set of
, or some subset thereof).
It is not possible to define a density with reference to an arbitrary measure (e.g. one can not choose the counting measure as a reference for a continuous random variable). Furthermore, when it does exist, the density is almost unique, meaning that any two such densities coincide almost everywhere.
Further details
Unlike a probability, a probability density function can take on values greater than one; for example, the continuous uniform distribution on the interval has probability density for and elsewhere.
The standard normal distribution has probability density
If a random variable is given and its distribution admits a probability density function , then the expected value of (if the expected value exists) can be calculated as
Not every probability distribution has a density function: the distributions of discrete random variables do not; nor does the Cantor distribution, even though it has no discrete component, i.e., does not assign positive probability to any individual point.
A distribution has a density function if its cumulative distribution function is absolutely continuous. In this case: is almost everywhere derivative, and its derivative can be used as probability density:
If a probability distribution admits a density, then the probability of every one-point set is zero; the same holds for finite and countable sets.
Two probability densities and represent the same probability distribution precisely if they differ only on a set of Lebesgue measure measure zero.
In the field of statistical physics, a non-formal reformulation of the relation above between the derivative of the cumulative distribution function and the probability density function is generally used as the definition of the probability density function. This alternate definition is the following:
If is an infinitely small number, the probability that is included within the interval is equal to , or: